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HOMOGENEOUS CANTOR SETS IN R3

DENNIS GARITY, DUŠAN REPOVŠ AND MATJAŽ ŽELJKO

General techniques are developed for constructing Lipschitz homogeneous
wild Cantor sets in R3. These techniques, along with Kauffman’s version
of the Jones polynomial and previous results on Antoine Cantor sets, are
used to construct uncountably many topologically inequivalent such wild
Cantor sets in R3. This use of three-dimensional finite link invariants to
detect distinctness among wild Cantor sets is unexpected. These Cantor
sets have the same Antoine graphs and are Lipschitz homogeneous. As a
corollary, there are uncountably many topologically inequivalent Cantor
sets with the same Antoine graph.

1. Introduction

Malešič and Repovš [1999] have constructed a specific example of a wild Cantor
set in R3 that is Lipschitz homogeneously embedded. This answered negatively a
question in [Repovš et al. 1996] as to whether Lipschitz homogeneity of a Cantor
set implied tameness. In this paper, we introduce more general techniques for
detecting the Lipschitz homogeneity of Cantor sets in Rn . These techniques allow
us to construct uncountably many topologically distinct Lipschitz homogeneous
wild Cantor sets in R3. These Cantor sets are all simple Antoine Cantor sets with
the same Antoine graph as defined in [Wright 1986]. The fact that the constructed
Cantor sets are all topologically distinct is a consequence of a result of Sher [1968]
and a computation of Kauffman’s version [1988] of the Jones polynomial for the
center lines of certain tori used in the construction. It is hoped that the techniques
in this paper may also prove to be applicable to showing that certain Blankinship
type Cantor sets [Blankinship 1951; Eaton 1973] in Rn for n ≥4 can be constructed
so as to be Lipschitz homogeneously embedded.
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2. Notation and Background

Lipschitz maps and similitudes. A map S : Rn
→ Rn is said to be a Lipschitz map

if there exists a constant λ such that

|S(x) − S(y)| ≤ λ|x − y| for every x, y ∈ Rn

and the smallest such λ is called the Lipschitz constant of S. In the special case
when

|S(x) − S(y)| = λ|x − y| for every x, y ∈ Rn

the map S is called a similarity and the number λ is called the coefficient of simil-
itude. Finally, when λ = 1 the map S is called an isometry.

A Cantor set C in R3 is Lipschitz homogeneously embedded if for each pair of
points x and y in C there is a Lipschitz homeomorphism h : Rn

→ Rn with h−1

also Lipschitz such that h(C) = C and h(x) = y.

Coordinates of points in Cantor sets. In the applications of this section, the com-
pact set X mentioned below will in general be a solid torus.

Let Gi , 1 ≤ i ≤ M , be finite index sets and let Si = {Sg : Rn
→ Rn

: g ∈ Gi }

be a set of similarities having the same coefficient λi of similitude. Let S = ∪Si .
Additionally, suppose that there exists a compact set X ⊂ Rn such that

(1) Sg(X) ⊂ X̊ for each g ∈ Gi and

(2) the sets Sg(X) are pairwise disjoint, g ∈ Gi .

Let T = (n1, n2, . . . ) be a fixed sequence where each ni is in {1, . . . , M}. Let
Gk

= Gn1 × Gn2 × · · · × Gnk , G∞

k =
∏

∞

i=k Gni and G∞
=

∏
∞

i=1 Gni . For each
multiindex γ = (g1, g2, . . . gk) ∈ Gk , write

Sγ = Sg1 ◦ Sg2 ◦ . . . ◦ Sgk and Xγ = Sγ (X).

In particular, Xg = Sg(X) for g ∈ G.

The number of components of a multiindex γ is called the depth of γ . So
depth γ = k if γ ∈ Gk .

Let Xk =

⋃
depth γ=k

Xγ .

It is well-known [Hutchinson 1981] that the intersection of the sequence of sets
X ⊃ X1 ⊃ X2 ⊃ · · · is a Cantor set. Denote this set by |(S, T)|. This Cantor set is
self-similar if T is repeating.

For an infinite multiindex γ = (g1, g2, g3, . . .) ∈ G∞ define

γ k
= (g1, g2, . . . gk) and Xγ =

∞⋂
k=1

Xγ k .
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Obviously, each Xγ is a singleton, consisting of a point from the Cantor set |(S, T)|

and for each point from |(S, T)| there exists exactly one such multiindex γ . The
components of γ are called the coordinates of the corresponding point from the
Cantor set |(S, T)|.

Finally define a juxtaposition of multiindices as follows. If δ = (d1, d2, . . . dk)

is a finite multiindex and γ = (g1, g2, . . .) is finite or infinite then let

δγ = (d1, d2, . . . dk, g1, g2, . . .).

In the special case when depth γ = 1, we have γ = g1 and δg1 = (d1, d2, . . . dk, g1).

Antoine Cantor sets. We give a brief summary of results from [Sher 1968] and
[Wright 1986]. Sher’s results are needed in our proof of our main theorem, while
Wright’s are used in our observation about Antoine graphs associated with the
Cantor sets we construct.

An Antoine Cantor set C in R3 is a Cantor set meeting the following conditions.

(1) C has a defining sequence M1, M2, . . ., each Mi consisting of the union of a
finite number of pairwise disjoint standard unknotted solid tori in R3 and M1

consisting of a single solid torus.

(2) The tori in Mi , for i ≥ 2, can be listed in a sequence Ti,1, Ti,2, . . . , Ti,n(i) so
that T j and Tk are of simple linking type if j −k = ±1 mod n and do not link
if j − k 6= ±1 mod n.

(3) The linked chain of tori Ti,1, Ti,2, . . . , Ti,n(i) have winding number greater
than 0 in the torus at the previous stage that contains them.

If, in condition (3), the winding number is required to be 1, and if each n(i) ≥ 4,
we call the resulting Cantor set a simple Antoine Cantor set. Most Antoine Cantor
sets in the literature, including the original one [Antoine 1920] are simple.

Sher [1968] showed that if two Antoine Cantor sets C1 and C2 with defining
sequences M1, M2, . . . and N1, N2, . . . are equivalently embedded in R3, then there
is a homeomorphism h of R3 to itself such that for each i , h takes the tori in Mi

homeomorphically onto the tori in Ni . As a consequence, if it can be shown that
for some i , no such homeomorphism exists, the two Cantor sets are inequivalently
embedded. This is the result we will need to construct the uncountably many
inequivalently embedded Cantor sets.

Wright [1986] associates an Antoine graph 0(C) with a Antoine Cantor C with
defining sequence M1, M2, . . . . The graph 0 is a countable union of nested sub-
graphs 00 ⊂ 01 ⊂ 02 ⊂ · · · .The subgraph 00 is a single vertex. For each vertex
v of 0i − 0i−1 , there is a polygonal simple closed curve with at least 4 vertices
P(v) contained in 0i+1 − 0i so that if v and w are distinct vertices of 0i − 0i−1,
then P(v) and P(w) are disjoint. 0i+1 consists of 0i , the union of the P(v) for v
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in 0i , and the union of edges running from v to the vertices of P(v). The vertices
of 0i − 0i−1 correspond to the components of Mi .

If v is a vertex of 0i −0i−1 corresponding to a component C of Mi , then P(v)

contains precisely the vertices corresponding to the components of Mi+1 contained
in C , and two such vertices are joined by an edge if and only if the corresponding
components of Mi+1 are linked. Here is a diagram of an Antoine graph similar to
that in [Wright 1986, p. 252]:

Wright shows that if C1 and C2 are simple Antoine Cantor sets with different
Antoine graphs 0(C1) and 0(C2), the Cantor sets are inequivalently embedded.

In our construction, all of the Cantor sets constructed have the same Antoine
graph, but are inequivalently embedded.

3. Constructing Lipschitz homogeneous Cantor sets

Let Gi , 1 ≤ i ≤ M , Si = {Sg : Rn
→ Rn

; g ∈ Gi }, X , Xg and T = (n1, n2, . . . )

be as above. The setting to keep in mind when reading Theorem 1 below is that
of a simple Antoine Cantor set defined by tori where each stage m torus has |Gnm |

stage m + 1 tori in its interior. For Theorem 1, also assume that each Gi is a finite
cyclic group, with the group operation written additively.

Theorem 1. For each i , 1 ≤ i ≤ M , suppose that fi : Rn
→ Rn is a Lipschitz

homeomorphism and that

(i) fi |Rn−X̊ = id,

(ii) for each g ∈ Gi , we have fi (Xg) = Xg+1 and the diagram

X

Xg
fi -

�

S g

Xg+1

S
g
+1-

commutes.

Then |(S, T)| is Lipschitz homogeneous in Rn .
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Proof. The approach to the proof is similar to that used in [Malešič and Repovš
1999, Lemma 1]. The main modification needed is to take into account the presence
of more than one finite index set. Fix an arbitrary pair of points a and b in |(S, T)|.
We will construct a homeomorphism

h : (Rn, |(S, T)|, a) → (Rn, |(S, T)|, b)

and prove that both h and h−1 are Lipschitz. Let α = (a1, . . . , ak, . . . ) and β =

(b1, . . . , bk, . . . ) ∈ G∞ be the coordinates of a and b. For an arbitrary γ =

(g1, . . . , gk) ∈ G k define the homeomorphism

fγ = Sγ ◦ fnk+1 ◦ S−1
γ : Rn

→ Rn .

Set

r1 = f b1−a1
n1

, r2 = f b2−a2
b1

, r3 = f b3−a3
(b1,b2)

, . . . , rk+1 = f bk+1−ak+1
βk , . . .

`i = r−1
i ,

hk = rk ◦ rk−1 ◦ · · · ◦ r2 ◦ r1.

In addition, for notational convenience, let

r−1 = r0 = id|Rn .

It follows by Lemma 2(iv) below that the sequences of homeomorphisms h1, h2, . . .

and h−1
1 , h−1

2 , . . . converge pointwise at all points different from the point a and
b, respectively. The convergence of the sequences at the point a and at the point
b follows from Lemma 2(ii). Denote the limits of the sequences by h : Rn

−→ Rn

and h̃ : Rn
−→ Rn , respectively. It also follows by Lemma 2 that h(a) = b, that

h(|(S, T)|) = |(S, T)|, and that h ◦ h̃ = h̃ ◦ h =idRn . It follows from Lemma 3 that
h and h̃ are Lipschitz. Thus Theorem 1 is proved. �

Lemmas needed for Theorem 1.

Lemma 1. The homeomorphism fγ is Lipschitz with Lipschitz constant equal to
that of fnk+1 . Moreover:

(i) fγ |Rn−X̊γ
= id.

(ii) For arbitrary g ∈ Gnk+1 , we have fγ (Xγ g) = Xγ (g+1), the diagram

X

Xγ g
fγ -

�

S γ
g

Xγ (g+1)

S
γ
(g
+1)-

commutes, and fγ |Xγ g is an isometry.
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(iii) For arbitrary (gk+1, gk+2, . . .) ∈ G∞

k+1,

fγ (X(γ,gk+1,gk+2,...)) = fγ (X(γ,1+gk+1,gk+2,...)).

Proof. This follows in a manner similar to [Malešič and Repovš 1999, Lemma 2].
Part (i) follows directly from condition (i) of Theorem 1. Part (ii) follows from
condition (ii) of the same theorem. Finally, (ii) implies (iii). �

Lemma 2. The homeomorphisms hk exhibit the following properties:

(i) h−1
k = `1 ◦ `2 ◦ · · · ◦ `k−1 ◦ `k .

(ii) hk(Xαk ) = Xβk and hk(Xαkγ ) = Xβkγ for arbitrary multiindex γ .

(iii) the restriction hk |X
αk ak+1

: Xα kak+1 → Xβ kak+1 is an isometry.

(iv) hk |Rn−X̊
αk

= hk+1|Rn−X̊
αk

= hk+2|Rn−X̊
αk

= · · · .

Proof. This follows in a manner similar to [Malešič and Repovš 1999, Lemma 3].
Property (i) can be proved directly by examining the construction of hk . Property
(ii) follows from Lemma 1(ii)–(iii). Property (iii) holds since fγ |Xγ gk+1

is an isom-
etry. Property (iv) holds because of Lemma 1(i). �

Lemma 3. hk and hk−1 are Lipschitz with equal Lipschitz constants for all values
of k.

Proof. This requires the most modification of [Malešič and Repovš 1999] as mul-
tiple similarities with different constants of similarity are involved.
We fix the sequence α = (a1, a2, . . .) of coordinates of the point a ∈ |S| and intro-
duce the notion of depth of a point x ∈ Rn:

dep x = j if x ∈ Xα j − X̊α j+1 .

Additionally, let

dep x = 0 if x ∈ X − X̊a1 and dep x = −1 if x ∈ Rn
− X̊ .

In the case x ∈ X̊α j for all j ∈ N (i.e. x = a) let dep x = ∞.

For arbitrary distinct points x, y ∈ Rn we now estimate the expression hk(x) −

hk(y). We may assume that dep x ≤ dep y. As x and y are distinct, case dep y =∞

and dep x = ∞ is not possible.

Case 1 Let the Lipschitz constant of the homeomorphism fi be denoted by λi . Let
λ = max{λi ; 1 ≤ i ≤ M} and T = max{|Gi |; 1 ≤ i ≤ M}, where |Gi | denotes the
number of elements of Gi . Hence the Lipschitz constants of the homeomorphisms
r1, r2, . . . , `1, `2, . . . do not exceed the number 3 = λT . Let dep y −dep x ≤ 1, i.e.

dep x ∈ { j, j + 1}, dep y = j + 1



LIPSCHITZ HOMOGENEOUS WILD CANTOR SETS 293

for some j ∈ N∪{−1, 0}. By Lemma 2, (iii) and (iv), and because of the construc-
tion of hk ,

|hk(x) − hk(y)| = |r j+1 ◦ r j (x) − r j+1 ◦ r j (y)| ≤ 32
|x − y|.

Case 2 Now let dep y − dep x ≥ 2. First let the degrees be nonnegative, i.e.

dep x = j ≥ 0 and dep y ≥ j + 2

for some j ∈ N. (It may be dep y = ∞ as well.) Then

x ∈ Xα j − X̊α j+1, y ∈ Xα j+2 .

For arbitrary disjoint compact sets C1, C2 ⊂ Rn , set

dmin(C1, C2) = min{|x − y|; x ∈ C1, y ∈ C2},

dmax(C1, C2) = max{|x − y|; x ∈ C1, y ∈ C2}.

The sets X − X̊1 and X2 are compact and disjoint; hence the numbers

dX = dmin(X − X̊1, X2) and DX = dmax(X − X̊1, X2)

exist. Since the similarity Sαk maps the triple (X, Xa1, X(a1,a2)) onto the triple
(Xαk , Xαka1, Xαk(a1,a2)), for each k ∈ N, we have

dmax(Xαk − X̊αka1, Xαk(a1,a2))

dmin(Xαk − X̊αka1, Xαk(a1,a2))
≤

DX

dX
.

Hence |hk(x) − hk(y)| ≤ (DX/dX ) |x − y|.

Finally, let dep x = −1 and dep y ≥ 1, i.e., x ∈ Rn
− X̊ and y ∈ X1. Then

hk(x) = x and

|hk(x) − hk(y)|

|x − y|
≤

|x − y| + |y − hk(y)|

|x − y|
≤ 1 +

diam X1

m
,

where m = inf{|x − y|; x ∈ Rn
− X̊ , y ∈ X1} (it is easy to show that m > 0). To

conclude, set

L = max
{
32,

DX

dX
, 1 +

diam X1

m

}
.

Then |hk(x) − hk(y)| ≤ L|x − y| for an arbitrary k ∈ N and x, y ∈ Rn .
The estimate |h−1

k (x) − h−1
k (y)| ≤ L|x − y| can be proved analogously, using

Lemma 2(i). �
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4. Main result

Theorem 2. There exist uncountably many topologically distinct Lipschitz homo-
geneous wild Cantor sets in R3. In fact, these Cantor sets can all be constructed as
simple Antoine Cantor sets with the same number of components of stage n inside
each component of stage n − 1 and thus with the same Antoine graphs.

Proof. Use Theorem 1 with M = 2, G1 = Z60 and G2 = Z60. Let T = (n1, n2, . . . )

be a fixed sequence of 1’s and 2’s. For each such sequence, construct a Lipschitz
homogeneous Antoine Cantor set as in Theorem 1.

For G1, let the similarities Sg, g ∈ G1 be constructed so as to take the outer torus
in Figure 1 to the smaller tori in the same figure. Each smaller torus in the chain
is obtained from the previous one by rotating the large torus by 2π/60 radians and
then by rotating the small tori by π/2 radians. The homeomorphism f1 needed in
Theorem 1 is constructed in a manner similar to that constructed in the example in
[Malešič and Repovš 1999].

For G2, let the similarities Sg, g ∈ G2 be constructed so as to take the outer
torus in Figure 2 to the smaller tori in Figure 2. Each smaller torus in the chain is
obtained from the previous one by rotating the large torus by 2π/60 radians and
then by rotating the small tori by π/4 radians. The homeomorphism f2 needed in
Theorem 1 is constructed in a manner similar to that constructed in the example in
[Malešič and Repovš 1999]. The resulting Cantor set is Lipschitz homogeneously
embedded by Theorem 1.

Note that the Antoine graphs associated with any two Cantor set constructed in
this way are the same.

Figure 1. Left: A torus with 60 smaller similar tori linked in a
simple chain inside, each of which is rotated by π/2 radians from
the previous one. Right: an enlargement of five of the smaller tori.
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Let C1 be the Cantor set constructed as in Theorem 1 for one sequence of 1’s
and 2’s and let C2 be the Cantor set constructed using a different sequence. We
need to show that these two Cantor sets are topologically inequivalently embedded.
For this, using the result of Sher mentioned on page 289, it suffices to show that
there is no homeomorphism of R3 to itself taking the large torus in Figure 1 to the
large torus in Figure 2, and taking the chain of smaller tori in Figure 1 to the chain
of smaller tori in Figure 2. If there were such a homeomorphism, the link formed
by the centerlines of the small tori in Figure 1 would be topologically equivalent
the link formed by the centerlines of the small tori in Figure 2. The next lemma
shows that this is not the case.

There are uncountably many sequences of 1’s and 2’s. The argument above
shows that each such sequence leads to a topologically distinct Lipschitz homoge-
neous wild Cantor set. This completes the proof of the theorem. �

Lemma 4. The links formed by the center lines of the smaller tori in Figures 1 and
2 are inequivalent.

Proof. The link formed by the centerlines of the chain of smaller tori in Figure 2 is
seen to be topologically embedded in R3 as follows. Starting at a fixed centerline
and proceeding around the chain, the centerline can be twisted by a homeomor-
phism of R3 fixed outside of the large torus in such a way that all but one of the
centerlines are embedded in the same manner as the link formed by the centerlines
of the smaller tori in Figure 1. The remaining centerline in Figure 2 can be ob-
tained from the corresponding centerline in Figure 1 by the following modification.
One of the centerlines in Figure 1 is given 30 half twists before linking with the
centerlines on either side. A computation of the version of the Jones polynomial
introduced in [Kauffman 1988] shows that these links are topologically distinct,

Figure 2. A similar chain, with each small torus rotated π/4 rel-
ative to the previous one.
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and thus the Cantor sets are topologically distinct. In fact, all that is needed is to
show that the span of the Kauffman polynomial (the highest power appearing in
the polynomial minus the lowest power) is different in each case.

For details of a computation of the Kauffman polynomial in this setting, see
[Garity ≥ 2005]. For completeness, we outline the computation. We refer the
reader to [Kauffman 1988] for details on the Kauffman bracket and Kauffman
polynomial. Let L represent an oriented link and |L| represent a particular diagram
for this link. The writhe of L in the diagram |L| is denoted by ω(|L|). Let L+, L−,

and L0 represented oriented link diagrams identical to |L| except at one crossing,
where L+ represents this crossing with positive crossing number, L− with negative
crossing number and L0 with the crossing split and the orientation preserved. We
use X (L) to denote the Kauffman polynomial of L .

Open Chains. Let Cn be a simple chain with n links. An easy induction, or the
multiplicativity of the Kauffman bracket relative to connected sums, shows that
〈Cn〉 = (−A4

− A−4)n−1, where 〈 〉 is the Kauffman bracket. If we orient the links
so the linking numbers alternate signs as in the superscripts below, we have

X (C + −···+−

n ) = X (C − +···− +

n ) = (−A4
− A−4)n−1 for n odd,

X (C + −···− +

n ) = (−A)−6(−A4
− A−4)n−1 for n even,

X (C − + ··· + −

n ) = (−A)6(−A4
− A−4)n−1 for n even.

In each case, the span of the polynomial is 8n−1 and the maximum and minimum
exponent in the polynomial can be read off. The maximum exponent is 4(n −1) if
n is odd and 4(n − 1) ± 6 if n is even. The minimum exponent is −4(n − 1) if n
is odd and −4(n − 1) ± 6 if n is even.

Closed Chains. Now take a closed chain LC2n with 2n components and with no
twists, as in Figure 1. Orient it so the linking numbers are alternately positive and
negative. Consider three consecutive links and modify them as follows:

L1 L2

L21 L22
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We now compute using the relation A4 X (+) = A−4 X (−) + (A−2
− A2)X (⇒)

and noting that the link labeled L1 above is C+···+

2n , the link L21 is C−···+

2n−1 and the
link L22 is LC2n−2:

X (LC2n) = A8 X (L1) + A4(A2
− A−2)X (L2)

= A8 X (C+···+

2n ) + A4(A2
−A−2)

(
A−8 X (L21) + A−4(A−2

−A2)X (L22)
)

= A8 X (C+···+

2n )

+ A4(A2
− A−2)

(
A−8 X (C−···+

2n−1 ) + A−4(A−2
− A2)X (LC2n−2)

)
= · · ·

= (−A4
− A−4)2n−2(−A6

− A−6) − (A−2
− A2)2 X (LC2n−2).

Thus

X (LC2n) = (−A4
− A−4)2n−2(−A6

− A−6) − (A−2
− A2)2 X (LC2n−2)

This sets up a recursion relation that can be solved for X (LC2n). The starting
condition is that X (LC2·1)= (−A2

−A−2) has maximum exponent 2 and minimum
exponent −2, and hence span 4.

The maximum exponent of X (LC2n) is

max{4(2n − 2) + 6, 4 + maximum exponent(X (LC2n−2))}

and the minimum exponent of X (LC2n) is

min{−4(2n − 2) − 6, minimum exponent((LC2n−2)) − 4}.

An easy induction now shows that span (X (LC2·n))=16(n − 1) + 12 for n ≥ 2.

Closed chains with twists. Take the case of a linked chain forming a loop with 2n
components, with k positive half twists, where k is even, in one of the links, LCk

2n .
Orient as in the previous case. By considering the diagram

one can make the following computations.

X (LCk
2n) = A−8 X (LCk−2

2n ) + A−4(A−2
− A2)X (C2n+1),

X (LCk
2n) = A−8 X (LCk−2

2n ) + A−4(A−2
− A2)(−A−4

− A4)2n.

The starting point here is when k = 0, LC0
2n = LC2n
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The maximum exponent is max{max. exp.(LC2k−2
2n ) − 8, 8n − 2}.

The minimum exponent is min{min. exp.(LC2k−2
2n ) − 8, −8n − 6}.

An easy induction now shows that span(X (LC2k
2n))=16n−4+4k, distinguishing

topologically all the chains with 2n links and different numbers of even twists. This
completes the proof of the lemma. �

5. Other results and questions

Using techniques similar to those used in the proof of Theorem 1, we can prove the
following result. Note that in this case, we assume that G is of the form Z p × Zq

for some positive integers p and q .

Theorem 3. For each i , 1 ≤ i ≤ 2, suppose that fi : Rn
→ Rn is a Lipschitz

homeomorphism and that:

(i) fi |Rn−X̊ = id;

(ii) f1(X(a,b)) = X(a+1,b) for (a, b) ∈ G;

(iii) f2(X(a,b)) = X(a,b+1) for (a, b) ∈ G and the following diagrams commute:

X X

X(a,b)

f1 -
�
S (a

,b
)

X(a+1,b)

S
(a
+1,b)-

X(a,b)

f2 -
�
S (a

,b
)

X(a,b+1)

S
(a,b

+1)-

Then |(S, T)| is Lipschitz homogeneous in Rn .

The construction suggested by the theorem is similar to the Blankinship con-
struction [1951] for wild Cantor sets in R4.

Question. Can this theorem be used to show that a Lipschitz homogeneous wild
Cantor set in R4 exists? This would require a more careful Blankinship-type con-
struction, in which the successive stages in the construction were self-similar to
the original stage.
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