
Monatsh. Math. 145, 239–245 (2005)

DOI 10.1007/s00605-004-0294-8

On Unions and Intersections of Simply
Connected Planar Sets

By

U. H. Karimov1, D. Repovš2, and M. Željko2
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Abstract. We construct several simple examples of planar compacta which show that without
additional conditions, a theorem of Breen and a direct generalization of the Seifert-van Kampen theorem
fail. We give answers to two conjectures of Bogatyi and a partial solution to his third conjecture. We
give a counterexample to a statement in the classical survey paper by Danzer–Gr€uunbaum–Klee, related
to Molnár’s result on intersections of simply connected planar sets.
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1. Introduction

A space X is called simply connected if it is path-connected and its funda-
mental group is trivial. The fundamental group of a planar space X is trivial if and
only if for every Jordan curve J � X and every point q2XnJ in the bounded
region determined by J, q belongs to X (see [15, p. 107, Proposition 2.51] and [10,
Chapter 10, x61, II, Theorem 5]) or equivalently, no Jordan curve in X is a retract
of X.

There exist two simply connected planar sets with simply connected intersec-
tion but non-simply connected union [9, p. 284, Fig. 1]:

Clearly, the spaces X0, X1 and X0 \ X1 are simply connected but the union
X0 [ X1 contains a topological circle which is its retract and therefore the union is
not simply connected. We generalize this theorem to an arbitrary finite number of
simply connected sets as follows:

Theorem 1.1. For an arbitrary natural number n there exists a family F ¼
fXigni¼0 of simply connected compact subsets of R2 such that:

(1) The unions
Sl

k¼0 Xik for all l< n and the intersections
Tl

k¼0 Xik for all l4 n
are simply connected.

(2) The intersection
Tn

i¼0 Xi is nonempty.
(3) The union

Sn
i¼0 Xi is not simply connected.



For n ¼ 2, Theorem 1.1 gives a counterexample to Theorem 1 from [3; p. 112]
(even though our definition of ‘‘simply connected’’ is somewhat different from the
definition in Breen’s paper) and to Conjecture 1 of [2; p. 398] (see also Section 4,
Conjecture B(1) below).

The answer to Conjecture 4 of [2, p. 400] (see Section 4, Conjecture C below)
follows from our Theorem 1.1 for n5 3. These planar compacta are simple exam-
ples which show that without some additional conditions the direct generalization
of Seifert-van Kampen theorem fails (the standard proofs of this fact are difficult –
see e.g. [4; pp. 314–315] and the references there).

The affirmative answer to Conjecture 3 of [2, p. 400]) (see Section 4, Con-
jecture B(2) below) follows from our second main result:

Theorem 1.2. If in a family of planar simply connected compact or open
subspaces F ¼ fXigni¼0 � R2 the intersection of every two members is path-con-
nected and the intersection of every three members is nonempty, then the inter-
section of all members

Tn
i¼0 Xi is nonempty.

2. Proof of Theorem 1.1

We will show how the corresponding example can be constructed for every
n2N. Fix the number n. Consider the closed topologist’s sine curve in the plane R2:

T ¼
�
ðx; yÞ2R2j0< x4 1; y ¼ sin

�
3�

2x

��
[ ðf0g� ½�1; 1�Þ:

Define for every k2N the set Ak:

Ak ¼
�
ðx; yÞ2R2j 3

4k þ 3
4 x4

3

4k � 1
and � 14 y4 sin

�
3�

2x

��
:

Figure 1
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Let L be any arc connecting the points ð0;�1Þ and ð1;�1Þ, which does not
intersect T [

S1
k¼1 Ak in other points.

Let

Xi ¼ T [ L [
[1
k¼1

Aðk�1Þðnþ1Þþiþ1;

for i2f0; 1; 2; . . . ; ng:
Figure 2 depicts the family fXigni¼0 for n ¼ 1.
All proper unions

Sl
k¼0 Xik and the intersections

Tl
k¼0 Xik for l4 n are simply

connected nonempty sets. The union
Sn

i¼0 Xi is not simply connected since
it contains the topological circle L [ � which is its retract (� is the arc
½0; 1� � f�1g). &

3. Proof of Theorem 1.2

We shall need the following lemma which is a direct consequence of Sperner’s
lemma (see e.g. [1, p. 161]) and a theorem of Lassonde (see [11, Th�eeor�eeme 2 on
p. 574]):

Lemma 3.1. Let �n be an n-simplex with vertices e0; e1; . . . ; en. Let fAigni¼0 be
a closed or an open covering of �n, satisfying the condition that every face
½ei0 ; ei1 ; . . . ; eim � of �n is contained in [m

j¼0Aij . Then the intersection of all sets
Ai is nonempty.

Proof of Theorem 1.2. Choose a point xi in every Xi, a point xij in every Xi \ Xj

and a point xijk in every Xi \ Xj \ Xk. Consider an n-dimensional simplex �n with
the vertices e0; e1; . . . ; en. Denote the m-dimensional skeleton of �n by �m

n . Con-
struct the mappings fm : �m

n !
Sn

i¼0 Xi inductively:

(1) Begin by setting f0ðeiÞ ¼ xi.
(2) Since the spaces Xi are path-connected and the intersections Xi \ Xj con-

tain the point xij, there exists a path connecting xi and xij in Xi. Therefore there

Figure 2
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exists a mapping f1 : �1
n !

Sn
i¼0 Xi which is the extension of f0, which maps

the barycenter eij of the ½ei; ej� to xij and which satisfies the condition that
f1ð½ei; eij�Þ � Xi.

(3) Construct the extension f2 : �2
n !

Sn
i¼0 Xi of f1 as follows: Consider a 2-

dimensional face ½ei; ej; ek� of the simplex �n. Let eijk be its barycenter and let
f2ðeijkÞ ¼ xijk. Since every member and the intersection of every two members of
fXigni¼0 are path-connected, there exists an extension of f1 onto the 1-dimensional
skeleton of the barycentric subdivision of the polyhedron �2

n which maps ½eijk; ei�
to Xi and the edges ½eijk; eij� to Xi \ Xj. Since Xi is simply connected, there exists an
extension f2 : �2

n !
Sn

i¼0 Xi such that f2ð½ei; ej; ek�Þ � Xi [ Xj [ Xk.
(4) Suppose now that for some m< n the mapping fm has already been con-

structed. Consider any ðmþ 1Þ-dimensional simplex ½ei0 ; ei1 ; . . . ; eimþ1
� of �mþ1

n .

We already have a mapping fm : @½ei0 ; ei1 ; . . . ; eimþ1
� !

Smþ1
j¼0 Xij of the boundary

@½ei0 ; ei1 ; . . . ; eimþ1
�. By Zastrow’s theorem on asphericity of planar subsets [5, 16],

this mapping can be extended to the ðmþ 1Þ-dimensional simplex ½ei0 ; ei1 ; . . . ;
eimþ1

�. In this manner we obtain the mapping fmþ1 : �mþ1
n !

Sn
i¼0 Xi.

We can conclude by induction that there exists a mapping f : �n !
Sn

i¼0 Xi

such that the image of every face ½ei0 ; ei1 ; . . . ; eim � is contained in
Sm

j¼0 Xij . It
follows that ½ei0 ; ei1 ; . . . ; eim � �

Sm
j¼0 f

�1ðXijÞ: Since the family F consists of
closed or open sets it follows by Lemma 3.1 that

Tn
i¼0 f

�1ðXiÞ 6¼ ; and thereforeTn
i¼0 Xi 6¼ ; &.

Remark. The condition of path-connectedness in Theorem 1.2 cannot be
replaced by the condition of connectedness (see Section 5).

4. On Conjectures of Bogatyi

Bogatyi [2] stated (among others) the following three conjectures (recall the
characterization of simple connectivity in the plane, given in our introduction):

Conjecture A ([2, p. 398, Conjecture 1]). If the intersection A0 \ A1 of two
planar simply connected continua A0 and A1 is path-connected then the union
A0 [ A1 is simply connected.

Conjecture B ([2, p. 400, Conjecture 3]). If in a finite family of planar simply
connected continua the intersection of every two continua is path-connected and
every three continua have a common point then the following hold:

(1) The union of all continua is simply connected.
(2) The intersection of all continua is nonempty.
(3) The intersection of all continua is path-connected.

Conjecture C ([2, p. 400, Conjecture 4]). If in a finite family of planar simply
connected continua the union of every two and every three continua is simply
connected then the union of all continua of the family is simply connected.

A counterexample to Conjectures A and B(1) for n ¼ 1 and for n ¼ 2 respec-
tively, follows from our Theorem 1.1. Conjecture B(2) follows directly from our
Theorem 1.2. Conjecture B(3) is equivalent to a statement of Eckhoff (see next
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Section 5). A counterexample to Conjecture C follows by our Theorem 1.1,
applied for n5 3.

5. On Statements by Danzer–Grünbaum–Klee and Eckhoff

The space is called acyclic if all of its reduced singular homology groups are
trivial. It was asserted by Danzer–Gr€uunbaum–Klee in [6; p. 125] that for the plane
R2 Molnár [12, 13] established the following improvement of Helly’s Topological
Theorem:

Statement 5.1. A family of at least three simply connected compact sets in R2

has a nonempty simply connected intersection, provided that each two of its members
have connected intersection and each three members have a nonempty intersection.

We now give an example which shows that this assertion is incorrect: Let L1

and L2 be any arcs in the plane connecting the points ð0; �1Þ and ð1; �1Þ such
that L1 \ L2 ¼ ðL1 [ L2Þ \ T ¼ fð0; �1Þ; ð1; �1Þg, see Section 1 for the defini-
tion of the set T . Let Xi ¼ Li [ T for i ¼ 1; 2, and X3 be a closed topological disk
in the plane generated by L1 [ L2. Figure 3 below depicts these spaces.

Clearly all sets Xi \ Xj are connected. Nevertheless, X1 \ X2 \ X3 is not con-
nected. If we subdivide the set X3 into two topological disks X0

3 and X0
4, by a

‘‘vertical’’ line in the middle, we get the family fX1;X2;X
0
3;X

0
4g which satisfies

the hypotheses of Statement 5.1 above. However, X1 \ X2 \ X0
3 \ X0

4 is the empty
set. &

In [7; p. 402] it was stated by Eckhoff that Helly [8] established the following
result:

Statement 5.2. Let K be a finite family of closed sets in Rd such that the
intersection of every k members of K is acyclic for k4 d and is nonempty for
k ¼ d þ 1. Then \K is acyclic.

Figure 3
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We were unable to find any proof of Statement 5.2 in the literature (note that
Helly [8] used Vietoris homology). However, we will now prove that Conjecture
B(3) is equivalent to the Statement 5.2 for d ¼ 2.

Suppose that Statement 5.2 is valid and let K be a family of spaces satisfying
the hypotheses of Conjecture B(3). Then the intersection of every two continua of
the family is path-connected. Since the fundamental group of the intersection of
any two simply connected planar set is trivial (consider any Jordan curve J in the
intersection – the bounded region determined by J belongs to both subsets), it
follows that the intersection of every two elements of the family is simply con-
nected. By Zastrow’s theorem on asphericity of planar spaces ([5, 16]) and by the
Hurewicz theorem (see e.g. [14, p. 397]), every simply connected planar space is
acyclic. By Statement 5.2 it now follows that the intersection of all members of the
family is acyclic and therefore it is a path-connected set. Therefore Statement 5.2
implies Conjecture B(3).

Suppose now that the Conjecture B(3) is valid and assume that the hypotheses
of Statement 5.2 are satisfied for some family K: Every acyclic planar subspace
has trivial fundamental group. (Otherwise as was mentioned in Section 1 there
would be a Jordan curve J which would be its retract and therefore the 1-dimen-
sional singular homology group would be nontrivial). It now follows that every
acyclic planar set is simply connected and the family K satisfies the conditions of
Conjecture B(3). Therefore

T
K is a path-connected set with the trivial funda-

mental group. Therefore
T
K is an acyclic planar set and Conjecture B(3) implies

Statement 5.1 for d ¼ 2: &
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